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Abstract

N-Nitrosation of dihydropyrimidinones with nitric oxide occurred regioselectively, giving the corresponding N(3)-nitrosamides in high
yields. The reaction most likely took place by a nucleophilic attack. Aprotic and polar solvents, such as CH;CN and tetrahydrofurane
(THF) greatly favored the reaction, whereas protic solvents with high dielectric constant, such as CH;OH and water, disfavored it.

© 2007 Elsevier Ltd. All rights reserved.

N-Nitroso compounds, in general, possess intriguing
properties with an impact on medicine and biochemistry.'
As such, it seems to be important to understand the forma-
tion mechanism for N-nitrosamines/amides. These com-
pounds are traditionally prepared by the reaction of
secondary amines/amides with nitrous acid formed in situ
in aqueous acidic media,>® where nitrosonium ion
(H,ONO™", protonated nitrous acid) nitrosates secondary
amines/amides via a series of proton/nitrosonium transfers.
New approaches for the N-nitrosation of secondary and
tertiary amines and amides wusing the complex
[NO™.Crown-H(NO3) ], a mixture of tin(IV) chloride and
sodium nitrate, and PVP-N,O, were reported.*

In conjunction with our continuing interest in reactions
of nitric oxide (NO) with various organic molecules,” we
recently found that NO nitrosated one of the secondary
N-amido groups of dihydropyrimidinones, in which there
were two different kinds of secondary N-amido groups, in
high regioselectivity and in high yield. Itoh et al. studied
the reaction of nitric oxide with amines® and amides’ and
different products were obtained. The reaction mechanism
was assumed to be an N,Oz-mediated hydrogen abstrac-
tion from the NH group. Calculations on the N-nitrosation
of amines by NO, and NO, respectively, in various media
such as alkaline solution, lipid, and gas phase suggested a
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free radical mechanism, in which NO, abstracted a hydro-
gen atom from the nitrogen of primary/secondary amines
to form an intermediate complex of an aminyl radical
and nitrous acid. The aminyl radical was then quenched
by nitric oxide, leading to the formation of nitrosamine.®
In the present work, yet, the reaction mechanism seems
to take place by a nucleophilic attack of the nitrogen of
an amine on N,Os.

In a typical procedure, 0.25 mmol of 1, which was pre-
pared following the method described in Ref. 9, was dis-
solved in 40 mL of dry CH3CN at ambient temperature.
The resulting solution was then degassed for 20 min. NO
was carried by argon and purified by passing it through a
series of scrubbing flasks containing 4 M NaOH, distilled
water, and CaCl, in this order. Purified NO was bubbled
through the stirred stock solution. In 3-5 h, after comple-
tion of the reaction, as indicated by TLC, evaporation of
solvent gave almost pure product 2 in high yield (Scheme
1). Product 2 was further purified by column chromato-
graphy on silica gel and characterized by 'H and '*C
NMR, MS, HRMS, and 1D NOE experiments with
comparison to those of the mother molecules.'” No side
product was detected. The results are listed in Table 1.

Table 1 indicates that the nitrosation occurred regiospe-
cifically at N(3). This observation may be rationalized in
terms of the higher nucleophilic strength of N(3) compared
to N(1), owing to a higher electron-withdrawing inductive
effect on N(1) caused by both of a double carbon-carbon
bond and a carbonyl group. This standpoint can be
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Table 1
Reaction of dihydropyrimidinones with NO in CH3;CN at ambient
temperature

Substrate R Yield of 2 (%)
1a 4’-(OMC)—C(,H4 95
1b 4'~(Cl)-CeH,4 93
1c 4,-(N02)*C(,H4 91
1d Ph 93
te 3= 05
o]
1f iso-Butyl 94
1g n-Propyl 94
1h iso-Propyl 95
1i Ethyl 94
1j H 95
1k PhCH=CH 0
1 (CH3),C=CH 0

supported by '"H NMR spectra of the substrate. '"H NMR
peak of N(1)-H of 1a locates downfield at 9.17 ppm,
whereas that of N(3)-H highfield at 5.09 ppm. This reveals
that the reaction proceeds most likely via a nucleophilic
mechanism. Otherwise, the nitrosation proceeded smoothly
when R is aryl or alkyl, whereas no reaction occurred when
R was a vinyl as in the cases of 1k and 11. The exceptions
may be attributed to the lowering nucleophilicity of N(3)
caused by a vinyl directly linked to C(4). A vinyl will exhi-
bit a stronger electron-withdrawing inductive effect on N(3)
than that of a phenyl. In addition, it is worth pointing out
that the CH-N(NO) protons exhibited no diastercotopic
nature in their '"H NMR spectra.’®!!

In the reaction using NO as a reagent, there has been
always a problem that the true active species is unidenti-
fied. In our experiments, we found no reaction occurred

when the system was absolutely protected from air. Pires'?
and Lewis'® studied the NO/O, system in the presence of
phenol and morpholine, respectively, and concluded that
N,O3; was the nitrosating entity. NO is readily oxidized
by oxygen to NO, and then converted to N,O5.'* Displace-
ment of the good leaving group nitrite (TONO) from N,O;
by the Lewis base N(3) of dihydropyrimidinone with a
stronger nucleophilicity leads to the formation of 3
(Scheme 2). Intermediate 3 then undergoes a deprotonation
to give end product 2.

The solvent effects on product yields were examined
using 1a as a substrate (Table 2) in various solvents, includ-
ing: (a) aprotic and nonpolar solvents such as CCly,
N(C,Hs)3, and benzene; (b) aprotic and polar solvents such
as THF, CH,Cl,, and CH;CN; and (c) protic solvents with
high dielectric constant such as CH;0OH and H,O.

Table 2 indicates that nonpolar solvents such as CCly
and N(C,Hs);, in which dihydropyrimidinones and NO
may be less soluble, disfavored the nitrosation, whereas
aprotic, polar, and weakly nucleophilic solvents such as
CH;CN and THF, in which dihydropyrimidinones and
NO may be relatively soluble, favored the reaction. Polar
solvents can stabilize ions through a charge dispersion
interaction. The more important role of polar solvents is
to form hydrogen bonds between N-amido hydrogen and
solvent, which will enhance the nucleophilicity of N-
amido.'® Although protic solvents with high dielectric con-
stant such as CH3;0H and H,O more favored the hydrogen
bonding, but the reaction did not occur. It may be ratio-
nalized by a stronger hydrogen bonding (Scheme 3), which
blocks N,Oj3 approaching N(3) of 1. As such, the substrate
molecule most likely undergoes a nucleophilic attack on
N,Os;, unlike a free radical mechanism. If not, it
would afford N(1)-nitrosoamides instead of N(3)-nitroso
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Table 2
Solvent effects on the reaction of 1a with NO?*

Solvent Conversion (%) Yield of 2 (%)
CCly 0 0
N(CHs)s 0 0
Benzene 75 73
THF >99 93
CH,Cl, 90 88
CH;CN >99 94
CH;0H 0 0
H,O 0 0

% All the reactions were carried out with 0.15mmol of 1a in 20 mL
solvent for 3 h.
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compounds because N(1)-aminyl radical intermediate com-
plex is more stable than N(3)-aminyl radical intermediate
complex due to a large conjugated system.

In conclusion, we present herein an approach for regio-
selective N-nitrosation of dihydropyrimidinons with NO.
Its main advantages are readily available starting materials,
convenient performance under mild conditions and high
yields.
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